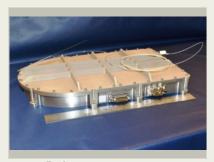
Spaceflight 1.94 micron Tm Fiber Laser Transmitter, Phase I


Completed Technology Project (2016 - 2016)

Project Introduction

Fibertek proposes to develop a spaceflight prototype 1940 nm, 100 W thulium (Tm) laser suitable for NASA spaceflight and long-duration unmanned aerial vehicle (UAV) missions. The proposal is innovative because it demonstrates 100 W of polarization maintaining (PM) performance at 1940 nm. We expect a 2x to 3x improvement in efficiency compared to available commercial off-theshelf (COTS) unpolarized Tm fiber lasers, and the laser will be packaged for high reliability for spaceflight operation. This SBIR leverages commercial Tm laser technology, published scientific test data, available optical components, and Fibertek's validated Tm fiber laser model. A spaceflight 100 W PM Tm laser is enabling and provides a path to space for a pulsed, Q-switched 2 um Ho:YLF laser with up to 80 mJ/pulse at 100-200 Hz. Lidar performance design studies from a low earth orbit (LEO) satellite indicate that 80 mJ of pulsed 2 um energy enables the simultaneous measurements of CO2 and water vapor using Integrated Path Differential Absorption (IPDA) and global wind light detection and ranging (lidar). NASA laser experiments have shown the 100 W of 1940 nm peak pump power is needed to generate 80 mJ/pulse.

Primary U.S. Work Locations and Key Partners

Spaceflight 1.94 micron Tm Fiber Laser Transmitter, Phase I

Table of Contents

Project Introduction	1	
Primary U.S. Work Locations		
and Key Partners	1	
Project Transitions	2	
Images	2	
Organizational Responsibility		
Project Management		
Technology Maturity (TRL)	2	
Technology Areas	3	
Target Destinations	3	

Spaceflight 1.94 micron Tm Fiber Laser Transmitter, Phase I

Completed Technology Project (2016 - 2016)

Organizations Performing Work	Role	Туре	Location
Fibertek, Inc.	Lead Organization	Industry	Herndon, Virginia
Langley Research Center(LaRC)	Supporting Organization	NASA Center	Hampton, Virginia

Primary U.S. Work Locations

Virginia

Project Transitions

0

June 2016: Project Start

December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/140485)

Images

Briefing Chart ImageSpaceflight 1.94 micron Tm Fiber
Laser Transmitter, Phase I
(https://techport.nasa.gov/imag
e/127471)

Final Summary Chart Image Spaceflight 1.94 micron Tm Fiber Laser Transmitter, Phase I Project Image (https://techport.nasa.gov/image/135034)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Fibertek, Inc.

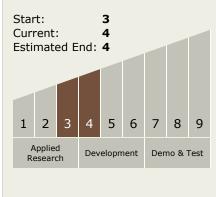
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

Brian Mathason

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

Spaceflight 1.94 micron Tm Fiber Laser Transmitter, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- **Target Destinations**

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

